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Abstract
Contractions of Leibniz algebras and Courant algebroids by means of (1, 1)-
tensors are introduced and studied. An appropriate version of Nijenhuis tensors
leads to natural deformations of Dirac structures and Lie bialgebroids. One
recovers presymplectic-Nijenhuis structures, Poisson–Nijenhuis structures and
triangular Lie bialgebroids as particular examples.
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1. Introduction

This paper is a natural continuation of our previous work [CGMb], where contractions and
Nijenhuis tensors have been studied for algebraic operations of arbitrary type on sections of
vector bundles. Recall that a Nijenhuis tensor N for a bilinear operation ‘◦’ on sections of a
vector bundle A over M is a (1, 1)-tensor N ∈ Sec(A⊗A∗) viewed as vector bundle morphism
N : A → A (or the corresponding C∞(M)-linear map N : Sec(A) → Sec(A) on sections)
such that its Nijenhuis torsion

TN(X, Y ) = N(X) ◦ N(Y ) − N(X ◦N Y ) (1)

vanishes, where ‘◦N ’ is the contracted product

X ◦N Y = N(X) ◦ Y + X ◦ N(Y ) − N(X ◦ Y ). (2)

The theory of Nijenhuis tensors for Lie algebra brackets goes back to a concept of contractions
of Lie algebras introduced by Saletan [Sa]. Nijenhuis tensors for Lie algebroids and Nijenhuis
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tensors on Poisson manifolds were studied in [MM, KSM] and in a number of following
papers. In [CGMa] the authors of this paper developed the theory of Nijenhuis tensors for
associative products, and in [CGMb]—for arbitrary algebraic operations.

One can apply directly the procedures from [CGMb] to Leibniz algebras. The vanishing
of the Nijenhuis torsion implies that the contracted product ‘◦N ’ is again a Leibniz product.
However, as we will see in the example of the Courant product on TM ⊕ T∗M (in its Leibniz
version) the vanishing of the Nijenhuis torsion is a restrictive assumption too. To get that ‘◦N ’
is Leibniz it is sufficient to require that TN is a Leibniz 2-cocycle. We will refer to such tensors
N as to weak Nijenhuis tensors for Leibniz algebras. Since the use of weak Nijenhuis tensors
does not lead to contractions in the strict sense (they do not come from a limit procedure),
one should rather call ‘◦N ’ a deformed product in this case. So the convention throughout
this paper is that we use the word ‘contraction’ heuristically, thinking just on a procedure of
passing from a product ‘◦’ to the product ‘◦N ’ for a specifically chosen (1, 1)-tensor N.

To introduce a notion of a Lie bialgebroid contraction, we use the concept of Courant
algebroid [LWX] in its Leibniz version. Since the Courant algebroid is not only a Leibniz
product but also a non-degenerate pairing with certain consistency conditions with the Leibniz
product, we check what property of N ensures the consistency conditions being satisfied also
for ‘◦N ’. It turns out that it is sufficient to assume that N + N∗ = λI, λ ∈ R, where N∗ is
dual to N with respect to the pairing; we will call such tensors paired. Thus, paired and weak
Niejnhuis tensors on Courant algebroids give rise to deformed Courant algebroids.

There is a straightforward but very useful generalization of the concept of the Nijenhuis
tensor. Suppose that L is a subbundle of A whose sections are closed with respect to the
operation ‘◦’, i.e. they form a subalgebra in (Sec(A), ◦). If Sec(L) is closed also for ‘◦N ’ and
the torsion TN vanishes on L, i.e. TN(X, Y ) = 0 for all X, Y ∈ Sec(L), we will refer to N as
to an outer Nijenhuis tensor for (L, ◦). This concept seems to be the right tool in contracting
Dirac structures, i.e. subbundles of Courant algebroids which are maximal isotropic and closed
with respect to the product. In this approach, a Dirac–Nijenhuis structure is an outer Nijenhuis
tensor N for a Dirac subbundle L such that ‘◦N ’ is skew-symmetric on Sec(L), so that ‘◦N ’ is
a deformed Lie algebroid bracket on L. A particular case is when N is a weak Nijenhuis and
paired tensor on a Courant algebroid which is an outer Nijenhuis tensor for L. In this case the
subbundle L is a Dirac structure for the deformed Courant algebroid product ‘◦N ’.

Finally, Lie bialgebroids are known as complementary to each other Dirac subbundles
(structures) E1, E2 in a Courant algebroid A,E1 ⊕ E2 = A. It is therefore completely
natural to call by Lie bialgebroid–Nijenhuis structure any tensor N on A which yields Dirac–
Nijenhuis structures for both: E1 and E2. The deformed bracket restricted to E1 and E2

gives two Lie algebroid brackets and the consistency condition (N is paired) is satisfied, so
we get a new Lie bialgebroid. It is interesting that, associated with particular contractions, we
recover presymplectic-Nijenhuis and Poisson–Nijenhuis structures (cf [MM, KSM]). Since
the latter play a prominent role in the theory of integrable systems, this discovery supports
once more the conviction on the importance of bi- or double-structures such as Lie bialgebras,
Manin triples, Lie bialgebroids, Courant algebroids, etc, in complete integrability. Note that
a close relation of Poisson–Nijenhuis structures with Lie bialgebroids was first observed by
Kosmann-Schwarzbach [KS] (see also [GUa]).

2. Contractions of Leibniz algebras and the Courant bracket

The language of Leibniz algebras is very useful in description of Lie bialgebroids in the sense
of Mackenzie and Xu [MX]. In [CGMb], the theory of contractions has been developed for
binary operations of arbitrary type, so that all this general theory of contractions can be directly
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applied to Leibniz products (or brackets) on sections of a vector bundle A, in particular for
Courant algebroids and Lie bialgebras.

Definition 1. A Leibniz product (bracket) on a vector space A is a bilinear operation ‘◦’
satisfying the Jacobi identity

(X ◦ Y ) ◦ Z = X ◦ (Y ◦ Z) − Y ◦ (X ◦ Z) (3)

for all X, Y,Z ∈ A. The space A which is equipped with a Leibniz product we call a Leibniz
algebra.

Remark that Leibniz algebras as non-skew-symmetric generalizations of Lie algebras were
first studied by Loday [Lo] (they are called sometimes Loday algebras), and a major part of
(co)homology theory of Lie algebras was generalized to Leibniz algebras. Let now ‘◦’ be a
Leibniz product on the space A = Sec(A) of sections of a vector bundle A over M which
is local, i.e. which is locally defined by a bidifferential operator, and let N : A → A be a
(1, 1)-tensor over A. According to the general scheme in [CGMb], if the Nijenhuis torsion (1)
vanishes, the contracted product (2) is a Leibniz product which is compatible with the original
one, i.e. X ◦N Y + λX ◦ Y is a Leibniz product for any λ ∈ R. However, we can have the same
under much weaker conditions.

Lemma 1. The products ‘◦N ’ and ‘◦’ are always compatible in the sense that

(X ◦N Y ) ◦ Z − X ◦N (Y ◦ Z) + Y ◦N (X ◦ Z)

+ (X ◦ Y ) ◦N Z − X ◦ (Y ◦N Z) + Y ◦ (X ◦N Z) = 0. (4)

Proof. Direct computations with the use of the Jacobi identity (3) for ‘◦’. �

Theorem 1. The contracted product (2) is still Leibniz if and only if the Nijenhuis torsion (1)
is a 2-cocycle with respect to the Leibniz cohomology operator, i.e.

(δTN)(X, Y,Z) = TN(X, Y ◦ Z) − TN(X ◦ Y,Z) − TN(Y,X ◦ Z)

− TN(X, Y ) ◦ Z + X ◦ TN(Y,Z) − Y ◦ TN(X,Z) = 0. (5)

In this case ‘◦N ’ and ‘◦’ are compatible Leibniz products.

Proof. One proves that

(X ◦N Y ) ◦N Z − X ◦N (Y ◦N Z) + Y ◦N (X ◦N Z) = (δTN)(X, Y,Z) (6)

by direct computations using the Jacobi identity for ‘◦’ and the compatibility condition (4). In
the case when ‘◦N ’ is a Leibniz product, the Jacobi identity for the product X ◦N Y + λX ◦ Y

reduces to (4). �

The tensor N we will call a Nijenhuis tensor (for the Leibniz algebra A) if the Nijenhuis torsion
TN vanishes and a weak Nijenhuis tensor if the Nijenhuis torsion TN is a Leibniz 2-cocycle.
In both cases the contracted product ‘◦N ’ is Leibniz and is compatible with the original one.

An interesting example of a Leibniz product is the following version of the Courant
bracket on sections X + ξ of the bundle TM ⊕ T∗M:

(X + ξ) ◦ (Y + η) = [X, Y ] + (LXη − iY dξ). (7)

This is an example of a Courant algebroid associated with the trivial Lie bialgebroid
((TM, [·, ·]), (T∗M, 0)) with the standard Lie algebroid structure on TM and the trivial one on
T∗M (cf [LWX, Ro]). If we have a Nijenhuis tensor N0 for TM , we can contract the standard
bracket of vector fields to a Lie algebroid bracket [X, Y ]N0 = [N0X, Y ]+[X,N0Y ]−N0[X, Y ]
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(cf [KSM, CGMb]). We obtain another trivial Lie bialgebroid ((TM, [·, ·]N0), (T
∗M, 0)) with

the corresponding Courant bracket

(X + ξ) ◦N0 (Y + η) = [X, Y ]N0 +
(
LN0

X η − iY dN0ξ
)

(8)

where dN0 and LN0 denote the de Rham differential and the Lie derivative, respectively,
associated with the Lie algebroid (TM, [·, ·]N0). It is a matter of standard calculations to show
that dN0 = iN0 d−diN0 , where iN0 is the derivation of the algebra of differential forms generated
by N0 (see [KSM, GUa]). We may as well speak of the product (8) purely formally, not even
assuming that N0 is a Nijenhuis tensor, and get the following:

Theorem 2. The product ‘◦N0 ’ defined by (8) is actually the contracted product ‘◦N ’ with
N(X + ξ) = N0X − tN0ξ , where tN0 : T∗M → T∗M is the dual map: 〈X, tN0ξ 〉 = 〈N0X, ξ 〉,
i.e.

(X + ξ) ◦N0 (Y + η) = [X, Y ]N0 + (N0X) ◦ η − X ◦ (tN0η) + tN0(X ◦ η)

− (tN0ξ) ◦ Y + ξ ◦ (N0Y ) + tN0(ξ ◦ Y ). (9)

Proof. We have〈
LN0

X η, Y
〉 = (N0X)〈η, Y 〉 − 〈

η, [X, Y ]N0

〉
= (N0X)〈η, Y 〉 − 〈η, [N0X, Y ] + [X,N0Y ] − N0[X, Y ]〉
= 〈

LN0Xη + tN0(LXη) − LX(tN0η), Y
〉
.

The rest can be proved analogously. �

Since, for N being Nijenhuis, the contracted bracket ‘◦N0 = ◦N ’ is clearly a Leibniz bracket,
the tensor N is automatically weak Nijenhuis in this case. On the other hand, what is rather
unexpected, the tensor N is a Nijenhuis tensor for the Courant bracket (7) only in very particular
and rare cases. Namely, we have the following.

Theorem 3. For a Nijenhuis tensor N0 : TM → TM on a connected manifold M, the tensor
N : TM ⊕ T∗M → TM ⊕ T∗M,N(X + ξ) = N0X − tN0ξ , is a Nijenhuis tensor for the
Courant bracket (7) if and only if N2

0 = λI for certain λ ∈ R.

Proof. Since TN vanishes on TM and on T∗M separately, the vanishing of TN on TM ⊕ T∗M
is equivalent to the system of identities

tN0LN0
X η = LN0X(tN0η) (10)

tN0iY dN0ξ = iN0Y d(tN0ξ) (11)

for all X, Y ∈ Sec(TM) and η, ξ ∈ Sec(T∗M). The first one is equivalent to

N0[N0X, Y ] = [X,N0Y ]N0

for all X, Y ∈ Sec(TM) and, due to vanishing of the Nijenhuis torsion of N0, to

N2
0 [X, Y ] = [

X,N2
0 Y

]
.

Since (11) in the presence of (10) can be replaced by

(tN0)
2 d〈Y, ξ 〉 = d〈Y, (tN0)

2ξ 〉
the proof follows by the following lemma. �
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Lemma 2. If a (1, 1)-tensor K : TM → TM on a connected manifold M commutes with the
adjoint action of vector fields, i.e.

K[X, Y ] = [X,KY ] (12)

for all X, Y ∈ Sec(TM), then K = λI for certain λ ∈ R.

Proof. In local coordinates (xi) and the corresponding coordinate vector fields (∂i), we can
write K(∂j ) = Ki

j (x)∂i and, according to (12),

[
∂k,K

i
j (x)∂i

] = ∂Ki
j

∂xk
(x)∂i = 0

for all k, j (we use the Einstein’s summation convention), so the coefficients Ki
j (x) = Ki

j are
constant. Hence, (12) applied to X = x1∂k, Y = ∂1, gives Ki

k = δi
kK

1
1 , i.e. K = λI , where

λ = K1
1 . This locally defined constant λ serves for the whole M, since M is connected. �

Note that (1, 1)-tensors N0 : TM → TM with N2
0 = λI and constant rank are special in the

terminology of [BC]. They are proportional to such tensors with λ = 0,±1. The case λ = −1
is the case of an almost complex structure, λ = 1 is the case of an almost product structure,
and λ = 0 is the case of an almost tangent structure. If N0 is additionally a Nijenhuis tensor,
we deal with a complex, product, and tangent structure, respectively, cf [BC].

Corollary 1. A Nijenhuis tensor N0 : TM → TM gives rise to a Nijenhuis tensor
N = N0 ⊕ (−tN0) : TM ⊕ T∗M → TM ⊕ T∗M for the standard Courant bracket if and only
if N0 is proportional to a complex, a product or a tangent structure on M.

Such structures are extremely interesting from the geometric point of view. However, from an
algebraic point of view, the contracted Courant brackets for complex and product structures are
isomorphic with the original Courant bracket. To enrich the family of contracted brackets we
will work also with weaker versions of Nijenhuis tensors. This approach will be systematically
developed in the next sections for the general Courant algebroids.

3. Contractions of Courant algebroids. Dirac–Nijenhuis structures

A Courant algebroid is not only a Courant product ‘◦’ on sections of a vector bundle A but
also a nondegenerate symmetric pairing 〈·, ·〉 on A with certain consistency relations. The
general contraction procedure in such a case is obvious: we contract the product and check if
the consistency conditions with other structures are still satisfied. If this is the case, we call
such contraction the contraction of the whole structure and the corresponding Nijenhuis tensor
we call the Nijenhuis tensor for the global structure.

Let us recall briefly the structure of a Courant algebroid. We will use the Leibniz bracket
version of the Courant product (bracket) presented in [Ro] with some simplifications (cf [GM,
definition 1], [KS1, definition 2.1] and [Uch]). Thus the ‘compressed’ definition is as follows:

Definition 2. A Courant algebroid is a vector bundle τ : A → M with a Leibniz product
(bracket) ‘◦’ on Sec(A), a vector bundle map (over the identity) ρ : A → TM and a
nondegenerate symmetric bilinear form 〈·, ·〉 on A satisfying the identities

ρ(X)〈Y, Y 〉 = 2〈X, Y ◦ Y 〉 (13)

ρ(X)〈Y, Y 〉 = 2〈X ◦ Y, Y 〉. (14)
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Note that (13) is equivalent to

ρ(X)〈Y,Z〉 = 〈X, Y ◦ Z + Z ◦ Y 〉. (15)

Similarly, (14) easily implies the invariance of the pairing 〈·, ·〉 with respect to the left
multiplication

ρ(X)〈Y,Z〉 = 〈X ◦ Y,Z〉 + 〈Y,X ◦ Z〉 (16)

and that ρ is the anchor map for the left multiplication:

X ◦ (f Y ) = f X ◦ Y + ρ(X)(f )Y. (17)

Assume now that N is a (1, 1)-tensor on A and consider the ‘contracted’ product (2). We
do not assume that N is Nijenhuis at the moment. Exactly as in the classical case of a Lie
algebroid contraction [CGMb, lemma 2], we have the anchor ρN = ρ ◦ N for the contracted
multiplication

X ◦N (f Y ) = f (X ◦N Y ) + ρ(NX)(f )Y. (18)

Now, let us check under what conditions the identities (13) and (14) are still satisfied for ‘◦N ’.
Let N∗ be the adjoint of N with respect to the pairing:

〈NX, Y 〉 = 〈X,N∗Y 〉
and let � = N + N∗. Using the invariance (14), we get easily

〈X ◦N Y,Z〉 = 〈NX ◦ Y + X ◦ NY − N(X ◦ Y ), Z〉
= ρ(NX)〈Y,Z〉−〈Y,NX ◦ Z〉+ρ(X)〈NY,Z〉−〈NY,X ◦ Z〉−〈X ◦ Y,N∗Z〉
= ρ(NX)〈Y,Z〉 − 〈Y,NX ◦ Z〉 + 〈Y,N∗(X ◦ Z)〉 + 〈Y,X ◦ N∗Z〉

which equals ρ(NX)〈Y,Z〉 − 〈Y,X ◦N Z〉 if and only if

〈Y,X ◦ �Z − �(X ◦ Z)〉 = 0

for all X, Y,Z, i.e. if and only if � commutes with the left multiplication

X ◦ �Z − �(X ◦ Z) = 0. (19)

Thus (19) is equivalent to the invariance of the pairing with respect to ‘◦N ’:

ρN(X)〈Y,Z〉 = 〈X ◦N Y,Z〉 + 〈Y,X ◦N Z〉.
Similarly, checking (13) for ‘◦N ’, we get

〈X, Y ◦N Y 〉 = 〈X,NY ◦ Y + Y ◦ NY − N(Y ◦ Y )〉
= ρ(X)〈Y,NY 〉 − 〈N∗X, Y ◦ Y 〉
= 1

2ρ(X)〈Y,�Y 〉 − 1
2ρ(N∗X)〈Y, Y 〉

which equals 1
2ρ(NX)〈Y, Y 〉 if and only if

ρ(X)〈Y,�Y 〉 = ρ(�X)〈Y, Y 〉.
The latter can be rewritten in the form

〈X, Y ◦ �Y + �Y ◦ Y 〉 = 2〈�X,Y ◦ Y 〉
or

Y ◦ �Y + �Y ◦ Y = 2�(Y ◦ Y ).

Using (19) we get finally the condition

�(Y ◦ Y ) = �Y ◦ Y. (20)
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Theorem 4. If N : A → A is a (1, 1)-tensor on a Courant algebroid, then the contracted
product (2) is compatible with the symmetric pairing 〈·, ·〉 of the Courant algebroid, in the
sense that (13) and (14) are satisfied for ‘◦N ’ and ρN , if and only if

X ◦ (N + N∗)Y = (N + N∗)(X ◦ Y ) and (N + N∗)(Y ◦ Y ) = (N + N∗)Y ◦ Y

for all sections X, Y of A.

Of course, how restrictive the above conditions are, depends on ‘how irreducible’ is the
Courant product. However, there is one case which works for any Courant algebroid, namely
the case N + N∗ = λI , λ ∈ R.

Definition 3. A (1, 1)-tensor on a Courant algebroid we call paired if N + N∗ = λI for some
λ ∈ R. A paired (weak) Nijenhuis tensor we call (weak) Courant–Nijenhuis tensor.

Thus weak Courant–Nijenhuis tensors give rise to contractions, or better to say—deformations,
of Courant algebroids. Note, however, that the structure of a Courant algebroid is extremely
rigid and that there are very few true Courant–Nijenhuis tensors. First, observe that N is a
Courant–Nijenhuis tensor if and only N − λ

2 I is Courant–Nijenhuis (cf [CGMb, theorem 8]),
so we can always reduce to the case when N + N∗ = 0. We have the following generalization
of theorem 3:

Theorem 5. If N is a Courant–Nijenhuis tensor with N + N∗ = 0, then N2 commutes with the
left multiplication:

X ◦ N2Y = N2(X ◦ Y )

and N2(Y ◦ Y ) = (N2Y ) ◦ Y .

Proof. Using N∗ = −N and the invariance of the pairing, we get

〈N(X ◦N Y ), Z〉 = −〈X ◦N Y,NZ〉 = −ρ(NX)〈Y,NZ〉 + 〈Y,X ◦N NZ〉 (21)

and

〈NX ◦ NY,Z〉 = ρ(NX)〈NY,Z〉 + 〈Y,N(NX ◦ Z)〉 (22)

so N is Nijenhuis implies that the rhs of (21) and (22) are equal, i.e.

X ◦N NZ − N(NX ◦ Z) = 0. (23)

But the lhs of (23) is

NX ◦ NZ − N(X ◦N Z) − N2(X ◦ Z) + X ◦ N2Z

and vanishing of the Nijenhuis torsion implies N2(X ◦Z) = X ◦N2Z. One proves the second
identity analogously, see the proof of (20). �

Remark. The above property of N is a strong restriction indeed. We know already that in
the case of the standard Courant bracket this implies that N2 is proportional to the identity
(cf theorem 3). One can see this problem as the problem of small intersection of the properties:
being paired and being Nijenhuis. Indeed, exactly as in [CGMb], any Leibniz–Nijenhuis tensor
N gives rise to a whole hierarchy of compatible Leibniz structures and Leibniz–Nijenhuis
tensors of the form Nk while N2, for a paired N, is usually not paired. Thus the concept of a
hierarchy for Courant algebroid should be reworked. For example, one can consider only odd
powers or add an additional ‘twist’ to all powers of N. We will not discuss this problem in this
paper working, in principle, with generalized versions of Nijenhuis tensors. For example, one
can weaken the assumption for a paired tensor N to determine a proper contraction assuming
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just that the tensor N is weak Nijenhuis, i.e. we will admit weak Courant–Nijenhuis tensors
as well. For a weak Courant–Nijenhuis tensor N on a Courant algebroid A, the product
‘◦N ’ defines another Courant algebroid product with respect to the same pairing and the
anchor ρN , and ‘◦N ’ is compatible with ‘◦’, i.e. N + λI is a one-parameter family of weak
Courant–Nijenhuis tensors (cf theorem 1).

Let now L be a Dirac structure in the Courant algebroid A, i.e. let L be a subbundle which is
maximal isotropic and closed with respect to the Leibniz product ‘◦’.

Definition 4. The pair (L,N) we call a Dirac–Nijenhuis structure if N is a (1, 1)-tensor in
A such that the deformed product ‘◦N ’ is closed and skew-symmetric on L and the Nijenhuis
torsion TN vanishes on L.

Theorem 6. Let L be a Dirac structure in the Courant algebroid (A, ◦, 〈·, ·〉)
(a) If a paired (1, 1)-tensor N on A is an outer Nijenhuis tensor for L then (L,N) is a

Dirac–Nijenhuis structure.
(b) If (L,N) is a Dirac–Nijenhuis structure, then L is a Lie algebroid with respect to the

product ‘◦N ’ and N(X ◦N Y ) = NX ◦ NY for X, Y ∈ Sec(L).

Proof. (a) Since N is paired, the consistency conditions (13), (14) are satisfied for ‘◦N ’ that
implies the skew-symmetry of ‘◦N ’ on any isotropic subbundle.

(b) The deformed product ‘◦N ’ has the anchor ρ ◦ N and, due to (6) the vanishing of the
Nijenhuis torsion on L implies that ‘◦N ’ satisfies the Jacobi identity (3) on L. �

Examples. Our Courant algebroid will be A = TM ⊕T∗M with the standard Courant product
(bracket)

(X + ξ) ◦ (Y + η) = [X, Y ] + (LXη − iY dξ).

1. Let L be the Dirac subbundle in A associated with a closed 2-form 	, i.e. section of L is of
the form X + 	X for X being vector fields on M. The fact that 	 is closed can be expressed in
terms of the Courant product ‘◦’ by the identity

d	(X, Y, ·) = X ◦ 	Y + 	X ◦ X − 	[X, Y ] = 0. (24)

We will refer to any closed 2-form as to a presymplectic structure. Note however that, strictly
speaking, a presymplectic structure is often understood as a closed 2-form of constant rank.
We do not make any assumption on the rank of 	 in this paper. Let N0 be a (1, 1)-tensor on
TM , and let N(X + ξ) = N0X be an associated (1, 1)-tensor on A. Let us check under what
conditions (L,N) is a Dirac–Nijenhuis structure. First of all, L should be closed with respect
to the deformed bracket ‘◦N ’. Since, as easily seen,

(X + 	X) ◦N (Y + 	Y) = [X, Y ]N0 + N0X ◦ 	Y + 	X ◦ N0Y (25)

this condition is equivalent to

N0X ◦ 	Y + 	X ◦ N0Y − 	[X, Y ]N0 = 0 (26)

which can be rewritten in the form

(N0X ◦ 	Y + 	N0X ◦ Y − 	[N0X, Y ]) + (	X ◦ N0Y + X ◦ 	N0Y − 	[X,N0Y ])

− (	N0X ◦ Y + X ◦ 	N0Y − 	N0[X, Y ])

= d	(N0X, Y, ·) + d	(X,N0Y, ·) − d(	N0)(X, Y, ·)
= −d(	N0)(X, Y, ·) = 0
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where we have denoted

d(	N0)(X, Y, ·) = 	N0X ◦ Y + X ◦ 	N0Y − 	N0[X, Y ]

independently on the skew-symmetry of 	N0. But the condition

d(	N0)(X, Y, ·) = 0

implies immediately that 	N0 is skew-symmetric, i.e. 	N0 = tN0	. Indeed,

d(	N0)(X,X, ·) = d(	N0(X,X)) = 0

for all vector fields X, so 	N0(X,X) = 0 for all vector fields X and 	N0 is skew-symmetric.
Thus, L is closed with respect to ‘◦N ’ if and only if 	N0 is skew-symmetric and d(	N0) = 0.
In this case

(X + 	X) ◦N (Y + 	Y) = [X, Y ]N0 + 	[X, Y ]N0 .

Finally, the Nijenhuis torsion of N vanishes on L if and only if

N((X + 	X) ◦N (Y + 	Y)) = N0([X, Y ]N0) = N(X + 	X) ◦ N(Y + 	Y) = [N0X,N0Y ]

i.e. N0 is a classical Nijenhuis tensor. This structure is known as presymplectic-Nijenhuis
structure (called in [MM] 	N -structure), so that (L,N) as above is a Dirac–Nijenhuis
structure if and only if (	,N0) is a presymplectic-Nijenhuis structure.

2. Let L be as above but take the (1, 1)-tensor on A of the triangular form: N(X + ξ) = 
ξ ,
for some 
 : T∗M → TM . The deformed product on L reads

(X + 	X) ◦N (Y + 	Y) = [X, Y ]N0 + N0X ◦ 	Y + 	X ◦ N0Y

where N0 = 
	, so it exactly like (25). We conclude that (L,N) is Dirac–Nijenhuis in this
case if and only if 
	 is a Niejnhuis tensor, 	
	 is skew-symmetric, and d(	
	) = 0. In
[MM] such structures are called 
	-structures.

3. Let now the Dirac subbundle L of A will be associated with a Poisson tensor 
, i.e. sections
of L are of the form 
ξ + ξ for ξ being 1-forms, and the Lie algebroid bracket reads

(
ξ + ξ) ◦ (
η + η) = [
ξ,
η] + [ξ, η]


where

[ξ, η]
 = 
ξ ◦ η + ξ ◦ 
η

is the well-known bracket of 1-forms associated with the Poisson tensor 
. Put N(X + ξ) =
N0X for some (1, 1)-tensor N0 on TM . Since

(
ξ + ξ) ◦N (
η + η) = [
ξ,
η]N0 + N0
ξ ◦ η + ξ ◦ N0
η

requiring the skew-symmetry of this product, we immediately get that N0
 must be skew-
symmetric, i.e.

N0
 = 
tN0 (27)

and that

(
ξ + ξ) ◦N (
η + η) = [
ξ,
η]N0 + [ξ, η]N0
.

Using (27) we can rewrite [
ξ,
η]N0 as 

(
[ξ, η]
tN0

)
, where [·, ·]
tN0

is the deformation of
[·, ·]
 by tN0, so that the condition that ‘◦N ’ is closed on L can be written as



(
[ξ, η]
tN0

− [ξ, η]N0

) = 0. (28)

The vanishing of the Nijenhuis torsion of N on L takes the form

[
ξ,
η]N0 = [N0
ξ,N0
η]. (29)
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This simply means that the Nijenhuis torsion of N0 vanishes on the image of 
. The
conditions (27), (28) and (29) form a weaker version of what is called a Poisson–Nijenhuis
structure (
N0-structure in the terminology of [MM]) for which the conditions read: N0
 is
skew-symmetric, N0 is Nijenhuis and (instead of (28))

[ξ, η]
tN0
− [ξ, η]N0
 = 0

(cf [MM, KSM]).

4. Contractions of Lie bialgebroids

The origin of the concept of Courant algebroid [LWX] was an attempt to obtain double objects
for Lie bialgebroids in the sense of Mackenzie and Xu [MX]. Suppose now that both E and
E∗ are Lie algebroids over M with brackets [·, ·]E and [·, ·]E∗ , anchors a and a∗, respectively.
Let dE (resp., dE∗ ) be the de Rham differential and LE (resp., LE∗

) be the corresponding Lie
derivative associated with the Lie algebroid structure on E (resp., E∗). We will denote sections
of E by capitals and sections of E∗ by greek letters, and we will often suppress the indices
in the brackets, de Rham differentials and Lie derivatives if it will be clear from the context
which Lie algebroid they come from.

On A = E ⊕ E∗ there is a natural symmetric nondegenerate bilinear form:

〈X + ξ, Y + η〉 = 〈ξ, Y 〉 + 〈η,X〉. (30)

It is well known (cf [Ro, example 2.6.7]) that the bundle A with the symmetric pairing 〈·, ·〉,
the anchor ρ = a + a∗ and the product

(X + ξ) ◦ (Y + η) = ([X, Y ] + LξY − iη dX) + ([ξ, η] + LXη − iY dξ) (31)

is a Courant algebroid if and only if the pair (E,E∗) is a Lie bialgebroid. The subbundles E
and E∗ are in this case Dirac subbundles, i.e. maximal isotropic with respect to the symmetric
pairing and closed with respect to the Courant bracket, transversal to each other. Conversely
(see [LWX]), if L1 and L2 are Dirac subbundles transversal to each other of a Courant algebroid
A, then (L1, L2) is a Lie bialgebroid, where the brackets and anchors are just restrictions of
the corresponding structures of the Courant algebroid and L2 is considered as the dual bundle
of L1 under the Courant pairing. The Courant product is then of the form (31) and it is
completely determined by the Lie algebroid structures on E and E∗. We have, namely

〈X ◦ η, Y 〉 = a(X)〈η, Y 〉 − 〈η,X ◦ Y 〉 (32)

〈X ◦ η, ξ 〉 = −a∗(η)〈X, ξ 〉 + a(ξ)〈X, η〉 + 〈X, η ◦ ξ 〉. (33)

This nice characterization of Lie bialgebroids allows us to define naturally a concept of
contraction of a Lie bialgebroid.

Definition 5. Let (E,E∗) be a Lie bialgebroid, and N be a paired (1, 1)-tensor on the Courant
algebroid (A = E ⊕E∗, ρ, ◦, 〈·, ·〉). The triple (E,E∗, N) we call Lie bialgebroid–Nijenhuis
structure if N is an outer Nijenhuis tensor for both E and E∗.

Theorem 7. If (E,E∗, N) is a Lie bialgebroid–Nijenhuis structure, then ((E, (◦N)|E),

(E∗, (◦N)|E∗)) is again a Lie bialgebroid. Moreover, N is a weak Courant–Nijenhuis tensor
in the Courant algebroid E ⊕ E∗ and ◦N coincides with the Courant product ◦N associated
with the contracted Lie bialgebroid ((E, (◦N)|E), (E∗, (◦N)|E∗)).

Proof. The contractions ((E, (◦N)|E) and (E∗, (◦N)|E∗)) are clearly Lie algebroid structures
on E and E∗, respectively. The tensor N being paired respects the consistency conditions, so



Courant algebroid and Lie bialgebroid contractions 5199

that ((E, (◦N)|E), (E∗, (◦N)|E∗)) is a Lie bialgebroid and ◦N is a new Courant bracket, so N is
a weak Courant–Nijenhuis tensor. The product ◦N must coincide with ◦N , since the Courant
bracket in E ⊕ E∗ is uniquely determined by the Lie algebroid structures in E and E∗. �

Let us look closer at the contractions of Lie bialgebroids. First of all, the splitting A = E⊕E∗

induces the matrix form of N:

N =
(

NE 


	 NE∗

)
(34)

where NE and NE∗ act on E and E∗, respectively, and 
 : E∗ → E,	 : E → E∗. The tensor
N being paired satisfies N + N∗ = λI . For X, Y ∈ Sec(E) we have

〈NE(X) + 	(X), Y 〉 = 〈NX, Y 〉 = 〈X, λY − NE(Y ) − 	(Y)〉
so

〈	(X), Y 〉 = −〈X,	(Y )〉 (35)

i.e. 	 is skew-symmetric and can be understood as a section of
∧2

E∗. We will refer to 	 as
to a 2-form. Similarly, 
 is a section of

∧2
E, referred to as a bivector field. Finally, it is easy

to see that

NE + tNE∗ = λIE (36)

where the tensor tNE∗ represents the map tNE∗ : E → E dual to NE∗ : E∗ → E∗. Conversely,
if 
,	 are skew-symmetric and NE and NE∗ satisfy (36), then (34) is a paired tensor.

Clearly, X ◦N Y = X ◦NE
Y + X ◦	 Y . Using the obvious notation (X + ξ)E = X and

(X + ξ)E∗ = ξ , we get

X ◦N Y = X ◦NE
Y + (	X ◦ Y + X ◦ 	Y)E + (	X ◦ Y + X ◦ 	Y − 	(X ◦ Y ))E∗ .

Thus the condition that E is closed with respect to ◦N reads

(	X ◦ Y + X ◦ 	Y − 	(X ◦ Y ))E∗ = 0. (37)

But

(	X ◦ Y + X ◦ 	Y − 	(X ◦ Y ))E∗ = LX(	Y) − iY d(	X) − 	([X, Y ]E) = d	(X, Y, ·)
so that E is closed with the bracket ◦N if and only if 	 is a closed 2-form. The analogous
statement is, of course, valid for E∗. Note that we will denote the lhs of (37) also d	 even in
the case when 	 is not skew-symmetric. Of course, in this case d	 has a meaning as a map
and not as a 3-form. Similarly, let us see that

(	X ◦ Y + X ◦ 	Y)E = L	X(Y ) − L	Y (X) + dE∗(	(X, Y )) = [X, Y ]	 (38)

is the standard form of the bracket [·, ·]	 defined on E by the ‘bivector field’ 	 ∈ Sec(
∧2

E∗).
In the case when 	 is a ‘Poisson tensor’, i.e. the Schouten bracket [	,	]E∗ vanishes, the
bracket [·, ·]	 is known to be a Lie algebroid bracket. We will denote the rhs of (38) by
[X, Y ]	 also when 	 is not Poisson and not even skew-symmetric. We get the following:

Theorem 8. Let (E,E∗) be a Lie bialgebroid, and let N be a paired tensor of the form (34)
on the Courant algebroid E ⊕ E∗. Then the subbundle E (resp., E∗) is closed with respect
to the contracted bracket ‘◦N ’ if and only if 	 (resp., 
) is a closed 2-form with respect
to the Lie algebroid structure on E (resp., E∗), i.e. 	 ∈ Sec(

∧2
E∗) and dE	 = 0 (resp.,


 ∈ Sec(
∧2

E) and dE∗
 = 0). In this case the bracket ‘◦N ’ on E (resp., on E∗) is of the
form X ◦N Y = [X, Y ]NE

+ [X, Y ]	 (resp., η ◦N ξ = [η, ξ ]NE∗ + [η, ξ ]
).
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Let us now check what is meant by the vanishing of the Nijenhuis torsion on E (and, by duality,
on E∗). Comparing the parts in E and E∗, we get two equations

NE([X, Y ]NE
+ [X, Y ]	) = [NEX,NEY ]E + (	X ◦ NEY + NEX ◦ 	Y)E (39)

	([X, Y ]NE
+ [X, Y ]	) = [	X,	Y ]E∗ + (	X ◦ NEY + NEX ◦ 	Y)E∗ . (40)

They can be rewritten in the form

TNE
(X, Y ) + [X, Y ]	NE

− [X, Y ]	NE = 0

[	X,	Y ]E∗ − 	([X, Y ]	) − d(	NE)(X, Y, ·) = 0

where TNE
is the Nijenhuis torsion of NE with respect to the Lie algebroid bracket on E, the

bracket [·, ·]	NE
is the contraction of [·, ·]	 with respect to NE , the bracket [·, ·]	NE is given by

(38) but for (possibly non-skew-symmetric) 	NE and the exterior derivative d(	NE) is given
by (37) but for (possibly non-skew-symmetric) 	NE . Thus we get the following:

Theorem 9. The matrix (34) acting on A = E ⊕ E∗ gives rise to a Lie bialgebroid–Nijenhuis
structure if and only if the following conditions are satisfied:

(1) NE + tNE∗ = λIE for some λ ∈ R;
(2) 	 and 
 are skew-symmetric and closed: dE(	) = 0, dE∗(
) = 0;
(3) The following identities hold:

TNE
(X, Y ) + [X, Y ]	NE

− [X, Y ]	NE = 0 (41)

[	X,	Y ]E∗ − 	([X, Y ]	) − dE(	NE)(X, Y, ·) = 0 (42)

TNE∗ (η, ξ) + [η, ξ ]
NE∗ − [η, ξ ]
NE∗ = 0 (43)

[
η,
ξ ]E − 
([η, ξ ]
) − dE∗(
NE∗)(η, ξ, ·) = 0. (44)

Remark. The tensors 	NE and 
NE∗ need not be skew symmetric in general. However, if
the Lie algebroid structure on E is (locally) non-degenerate in the sense that the anchor map,
thus dE , is (locally) non-zero, then they have to be skew-symmetric. Indeed, (42) implies
that dE(	NE)(X,X, ·) = 0. But dE(	NE)(X,X, ·) = dE(	(X,X)), so 	(X,X) = 0
and 	 is (locally) skew-symmetric. Similarly, (43) implies that [η, η]
NE∗ = 0. But
[η, η]
NE∗ = dE(
NE∗(η, η)), so 
NE∗(η, η) = 0 and 
NE∗ is (locally) skew-symmetric.

Now consider the trivial Lie bialgebroid (E,E∗) = (TM, T∗M) with the standard bracket
of vector fields on TM and the trivial bracket on T∗M . Then dE∗ = 0,LE∗ = 0, the brackets
generated by 	 and 	NE are trivial and the above conditions for the matrix

N =
(

λ
2 I + N0 


	 λ
2 I − tN0

)
(45)

where 	 is a closed 2-form (a presymplectic structure) and 
 is a bivector field, reduce to

TN0 = 0 (46)

d(	N0) = 0 (47)

[η, ξ ]
tN0
− [η, ξ ]


tN0 = 0 (48)

[
η,
ξ ]E − 
([η, ξ ]
) = 0. (49)
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Note that, according to the above remark, in this case 	N0 and 
tN0 are skew-symmetric
automatically. The equation (46) means that N0 is a (standard) Nijenhuis tensor which, together
with the presymplectic form 	, constitutes a presymplectic-Nijenhuis structure (	N -structure)
[MM] according to (47). The identity (49) means that 
 is a Poisson tensor and (48) is a
compatibility condition with N0 which says that we deal with a Poisson–Nijenhuis structure
(cf [MM, KSM, GUa]). Thus we get the following.

Theorem 10. The Lie bialgebroid–Nijenhuis tensors N : TM ⊕ T∗M → TM ⊕ T∗M for the
standard Courant bracket (7) for the trivial Lie bialgebroid (TM, T∗M) are precisely of the
form

N =
(

λ
2 I + N0 


	 λ
2 I − tN0

)
(50)

where N0 is a Nijenhuis tensor, (N0,	) is a presymplectic-Nijenhuis structure and (N0,
) is
a Poisson–Nijenhuis structure.

Remark that for a general trivial Lie bialgebroid ((E, [·, ·]), (E∗, 0)) the contracted Lie
bialgebroid associated with the triangular matrix

N =
(

I 


0 I

)
(51)

is the triangular Lie bialgebroid associated with the ‘Poisson tensor’ 
 in the standard
terminology. Note also that the use of outer Nijenhuis tensors puts a flavour of interaction
with the ambient bundle to the contracted products. For example, the above triangular tensor
deforms the trivial bracket in E∗ into a possibly non-trivial bracket [·, ·]
 induced by the Lie
algebroid structure in E.

5. Concluding remarks

We have developed the idea of contractions of Courant algebroids, Dirac structures and Lie
bialgebroids as a procedure of deforming such structures by means of appropriate Nijenhuis
tensors. The standard Nijenhuis tensor approach turned out to be too restrictive, so we had to
deal with tensors whose Nijenhuis torsion vanishes only on a subbundle in question. We should
stress that this idea is of a conceptual nature rather than an ad hoc choice of definitions. The
naturality of our approach is supported by the fact that we can recover basic examples of the
interplay between the fundamental tensors in pairwise dual bundles, such as Poisson–Nijenhuis
structures, presymplectic-Nijenhuis structures, etc, which have been studied in mathematics
and physics in the context of integrability. We hope to find direct applications of our formalism
in bi-Hamiltonian formalism and integrability in forthcoming papers.
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